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What Do We Know and What Can We Learn About 
the Topology of the Universe? 
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We review the main mathematical concepts of cosmic topology and the main 
observational methods to study the topology of the universe. We then show how 
topology can play a crucial role in the early universe. 

1. ~ T R O D U C T I O N  

The goal o f  scientific cosmology is to answer  a set of  questions concern-  
ing the structure, origin, evolution, and fate of  the universe. Within the 
f ramework  of  general relativity, one tries to build some plausible models  for 
our universe. Thus,  a large set of  questions we would like to answer  can be 
reset under the more  abstract form: "What  are the geometry  and the topology 
of the universe?" 

Einstein 's  equations can help us answer  the first part o f  this question. 
However ,  since they are partial differential equations, they describe only 
local properties of  spacet ime and therefore cannot give us an answer  about 
the global structure of  our universe, i.e., its topology. 

Historically, this point arose in 1917 when Einstein proposed the first 
cosmological  solution of  general relativity. The Einstein static universe has 
spatial sections which are 3-spheres ($3), but de Sitter (1917) noticed that 
this solution can fit with another topology, the 3-dimensional  projective space 
(p3) constructed f rom S 3 by identifying antipodal points. The two solutions 
have the same metric, but different topologies,  which reflects the choice of  
different boundary conditions. 
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From a philosophical point of view, many arguments have been used 
to answer the question of the topology. On the one hand, the argument of 
"simplicity" or of "economy" was given to argue that the universe should 
be simply connected. However, this argument is so vague that it can also be 
used to claim the contrary. On the other hand, there are some arguments for 
considering compact (i.e., finite) universes: following Einstein (1955) and 
Wheeler (1968), we can advocate a finite universe on the basis of Mach's 
principle; another argument against an infinite universe was that they are 
"unaesthetic" (Ellis, 1975), because "anything that can happen does happen 
and an infinite number of times" (Blanqui, 1872; Epicurus, 1971) the only 
possibility for a simply connected universe to have compact spatial sections 
is to be closed (that is, of positive curvature). However, in a multiconnected 
framework, finiteness is a less stringent condition since all multiconnected 
universes (whatever their curvature) have compact spatial section. Hence, 
even if they do not directly deal with multiconnectedness, all these arguments 
on the finiteness of the universe certainly give good reasons to study 
multiconnectedness. 

Other arguments to consider finite universes come from quantum cos- 
mology (Zerdovich and Starodinsky, 1984), since the probability of birth of 
the universe is argued to be inversely proportional to its action and so to its 
volume (in other words, "the smaller, the more probable"). 

Philosophy and quantum cosmology give arguments in favor of multi- 
connected universes and at least reasons to study cosmic topology, but none 
of them can give us a clear answer. Hence, one must have a more pragmatic 
approach and try to study the implications of a nontrivial topology for our 
observed universe. Ideally, this will enable us to determine the topology 
observationally and set bounds on the characteristic lengths of such a universe. 

This way of studying a postulate is not new and has been used for another 
assumption of cosmology, "the cosmological principle," which evolved from 
the status of principle to the status of a working hypothesis (Maartens e t  al., 
1995), which has been scientifically tested by confronting inhomogeneous 
and anisotropic cosmologies with observations. 

If topology is a relevant observational property of the universe (roughly, 
if at least one characteristic length of the universe is smaller than the horizon), 
one can try to study this property objectively. This has been initiated using 
the distribution of galaxies and quasars, and the cosmic microwave back- 
ground (CMB). 

After a brief summary of the useful properties of topology applied to 
cosmology (Section 2). I describe what can be learned from the distribution 
of galaxies and clusters (Section 3) and from the CMB (Section 4). I finish 
by presenting new constraints on the creation of topological defects in a 
multiconnected universe (Section 5). 
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The three first points have been developed in a review by Lachirze- 
Rey and Luminet (1995), where an extended bibliography can be found. 

2. BASIC FEATURES OF  COSMIC T O P O L O G Y  

I will sum up the important definitions and notations, give some theo- 
rems, and make some remarks that are useful when one applies topology to 
cosmology. More detailed approaches can be found in many textbooks (e.g., 
Nakahara, 1990). 

Topology is the part of mathematics which studies continuity and tries 
to find out which properties remain invariant under a continuous group 
of transformations. 

Let us consider a manifold all and a loop ~/at x ~ At which is a path 
starting and ending at the same point x. 

If two loops at x, ~/ and ~/', can be continuously deformed into one 
another, then we will say that they are homotopic (~1 ~ ~f). 

The manifold act will be simply connected if Vx m 3L, any two loops 
at x are homotopic. A straightforward consequence of this is that any loop 
is contractible. If there is at least one loop that cannot be shrunk to a point, 
all is said to be multiconnected (e.g., R n and ,7' are simply connected and the 
n-hypertorus T", is multiconnected). 

We can now introduce the group of loops at x, called thefirst homotopy 
group at x, also known as the fundamental group arl(alL, x). If ~ is arcwise 
connected (which is an assumption for our universe), arl(M., x) and "rh(M., x ')  
are isomorphic and we will denote them art(AlL). This quantity is a topological 
invariant of AlL. For instance, for the two-dimensional T z, we can check that 
art(.~l.) is isomorphic to Z ~ Z [since the loops can wind i times around the 
hole and j times around the body of the toms, a given loop can be characterized 
by the pair (i, j )  of integers]. 

This can be generalized to define arn(M.), the n th group of  homotopy, 
the equivalence class of  the "n-dimensional loops" (e.g., a "2-dimensional 
loop" is a surface, etc.). 

A multiconnected manifold is conveniently described by its fundamental 
polyhedron ~ ,  which is convex with a finite number of faces {~;/} identified 
by pairs, together with the holonomy group I', consisting of  the collection 
of transformations -,/which carry a face to its homologous face. The "~'s" 
are isometries without fixed points (except for the identity). For instance, for 
a hypertorus T 3, ~ is a cube. 

is transformed into its image ~/~ by the action of ~/ ~ F. The set 
~ = {'y~, ~ ~ F} is called the universal covering space, and can be seen 
as the "unwrapping" of AL by F. One has the two basic properties: 
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�9 ~ t  = ~ / F  

�9 I f  M. = ~ then At is s i m p l y  c o n n e c t e d  

In cosmology, we will identify @ with the physical space where physical 
objects (galaxies, quasars . . . .  ) lie, whereas ~ is identified with the 
observed universe. 

One can go further and define more topological invariants to classify 
topological spaces. Such a classification can be found in Lachi6ze-Roy and 
Luminet (1995). Let us now stress some more points that are relevant for 
cosmology. 

First of all, a multiconnected universe will have length scales associated 
with its fundamental polyhedron; only two of them will be considered, et 
(the smallest length of the polyhedron) and 13 (the maximum length inscribed 
in the polyhedron). For instance, in a hypertorus, et is the length of the 
smallest edge of ~ (a parallelepiped), and 13 is the length of the "longest" 
diagonal of 9 .  

We will assume that the universe is isotropic and homogeneous on the 
large scale and thus that it can be described by Friedmann-Robertson-Walker 
metric. If the universe is simply connected, then the spatial sections are finite 
or infinite according to the sign of the spatial curvature index K. Euclidean 
(K = 0, also called "flat") and hyperbolic (K = - 1 ,  also called "open") 
models have an infinite volume, whereas elliptical (K = + 1, also called 
"closed") models have a finite volume. However, when the topology is 
nontrivial, all of  these three geometries can have compact sections. It is 
worth stressing that the words "open," "flat," and "closed" apply to the local 
geometry and that an open universe can have compact (and thus finite) spatial 
sections. With such cosmological models, the universal covering space can 
be identified either with S 3 if K = +1,  or R 3 if K = 0, or H 3 if K = - 1 .  
Let us also note that it is impossible to distinguish a strictly periodic and simply 
connected universe from a multiconnected universe. But all the properties of 
the universe have to be strictly periodic, which is most unlikely. 

One also has constraints on the universe coming from time orientability 
and causality conditions (Hawking and Ellis, 1973). We will assume that the 
spacetime is globally hyperbolic (it implies that it is stably causal and thus 
time-orientable), which means that it has Cauchy surfaces, i.e., that the 
knowledge on a hypersurface can enable us to determine the information in 
the whole spacetime. 

Under this assumption it can be shown that the study of the" topology 
of spacetime reduces to the study of  the topology of the constant-time hyper- 
surfaces (Sokolov, 1975). 

We can also wonder if we should also ask for the space to be orientable, 
although it is less stringent than the requirement of time orientability. Some 
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arguments have been given, based on the C P T  theorem (see Lachi~ze-Roy 
and Luminet, 1995, and references therein). We will not make such an 
assumption here. 

The last point we want to discuss here deals with observations. An 
observer making an observation records a set of values (robs, 0, qb) of 
coordinates. 

All information comes to the observer through light rays along null 
geodesics of the spacetime. In a simply connected universe, there is one and 
only one null geodesic relating a given object and the observer (if we neglect 
local gravitational lensing) and there is a bijective correspondence between 
observed coordinates and real positions of the objects from which we can 
deduce general laws (e.g., the redshift increases with the distance to the 
object, etc.). In a multiconnected universe, this correspondence may not hold, 
and many null geodesics starting from a given object can reach the observer 
(since they can make many "turns around" the universe). A given object will 
then be associated with many images; the nearest image is called "real" and 
the others are called "ghosts." A way out of this problem is to work in the 
universal covering space ~ where all ghosts are associated with an image 
of the physical object by an element of the holonomy group F. Then there 
will be only one null geodesic between two points. 

Working in the universal covering space also has another advantage 
since the horizon in OR has the same definition as in a simply connected 
universe. Hereafter (and particularly in Section 4) the "horizon" will refer 
to the horizon defined in OR. 

3. THE UNIVERSE AS A CRYSTAL 

The first attempts to investigate the topology of the universe were based 
on the last property we have described, i.e., the existence of multiple images 
of the same object. 

However, there are some effects that make the observation of ghosts 
not so simple. The first one lies in the fact that one has to take evolution 
effects into account since different images correspond to different epochs in 
the object's life. Of course, because the universe is not strictly homogeneous, 
the null geodesics are deformed by gravitational lensing and the deformation, 
amplification, and multiplication of images should, in principle, be consid- 
ered; however, in general, these effects are weak enough to be neglected. 
Finally, proper velocities must also be taken into account. During the time 
t, needed to travel around the universe, the real object has moved by d 
Vpropert u. Hence, the position of the next ghost is shifted by the corresponding 
angle. Observationally this fixes a limit on the needed spatial resolution 
(typically a few arcminutes). 
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The first idea is to use specific objects. Many authors (e.g., Sokolov 
and Shvartsman, 1974) tried to recognize our own galaxy and gave a minimum 
value of the identification length ct > 15 h -I Mpc. Gott (1980) found, using 
the Coma cluster, that ot > 60 h-~ Mpc. 

Let us point that this family of tests, which involve discrete sources, 
must consider populations of  objects extending deep enough in space to 
check large dimensions. Quasars seem to be good candidates, since they 
occupy a large volume of the universe and have a strong optical luminosity, 
but their estimated lifetime (a typical lifetime is ~108-109 years) prevents 
using them to study scales bigger than 30-300 Mpc. 

The clusters and superclusters seem in fact more useful. Most of  the 
bounds on the topology come from these sources. For instance, the number 
Nofghos t  images for a given real object in a cubic hypertorus of characteristic 
length L in h -I Mpc is given in Table I (Lehoucq et  al., 1996). 

Different methods, such as the search for periodic distributions of objects 
in redshift or in distance (Fang, 1990), have been proposed, since it is tempting 
to use topology to explain the apparent periodicity in a catalog of galaxies 
(Broadhurst et al., 1990). 

Most of  the various methods developed to test the cosmic topology have 
at least one of  the following three drawbacks: 

�9 They are designed for a given topology and then can set bounds or 
exclude only one given configuration (most of the time the hyper- 
toms). None of them can extract a signature of the topology from 
the observations. 

�9 They use very strong hypotheses concerning the cosmological model 
and the cosmic objects (population, evolution . . . .  ). 

�9 As we stressed before, they suffer from many observational problems, 
including evolution effects and absorption by the interstellar medium, 
which make it hard to identify objects (particularly when one wants 
to recognize the ghost image of  a given object). 

Recently, a promising approach has been proposed by Lehoucq et  al. 

(1996). A statistical method was developed based on the construction of  pair 

Table I. Number N of Ghost Images for a Given Real Object in a Cubic Hypertorus of 
Characteristic Length L (Lehoucq et aL, 1996) 

L 
(h-' Mpc) N(Z < I000) N(z < 4) N(Z < I) 

500 7000 1200 ,180 
1500 279 45 7 
2500 60 10 1.5 
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separation between cosmic sources and relies on the fact that each image of 
a given object is linked to the other images by the holonomies of  space. 
Among all the pairs of  all images, the ones formed by two ghosts of  the 
same object reflect an isometry of the space (those pairs are called "gg-pairs"). 

When one draws a histogram of the pair separation, these "gg-pairs" 
will emerge from ordinary pairs as a spike. The location and the relative 
height of the spikes are a signature of the topology. The test will then consist 
in recognizing the presence of these pairs in a 3D catalog of observed 
cosmic sources. 

The authors applied this method to a cluster catalog containing 901 
clusters up to a redshift of z -- 0.35. No significant spikes were observed, 
which set the bound ot > 650 h-I Mpc. 

One of the key points for implementing all these methods is to possess 
a 3D catalog of  cosmic objects. Unfortunately, existing catalogs have a very 
good angular resolution but a low depth in redshift. Thus it can be hoped 
that future observational programs devoted to redshift surveys will enable 
us to use such methods with more accuracy within the next decades. 

4. STUDYING T H E  COSMIC T O P O L O G Y  W I T H  T H E  CMB 

All the photons propagating from the last-scattering surface have been 
emitted roughly at the same epoch (at a redshift z ~ 1000). Thus one obvious 
advantage of  the CMB for the study of topology is that one does not have 
to take into account evolution effects. 

The fluctuations in the observed temperature of the CMB are interpreted 
as the effects of  inhomogeneities on the last-scattering surface and on the 
path between the last diffusion and us. The temperature contrast A ~- ~TIT 
is related to the gravitational potential via the Sachs-Wolfe effect (Sachs and 
Wolfe, 1967) 

A ( n )  = D r  - vjnJ + "t' - rl, - (':t' - 4 )  d'n 
t i l l  I11 

where Dr is the gauge-invariant density perturbation of the radiation fluid, 
v ~ the gauge-invariant velocity of the baryon fluid, n the direction of  observa- 
tion, and �9 and �9 the two gauge-invariant scalar potentials. The first term 
represents the intrinsic fluctuations on the surface of  last scattering, the second 
term is a Doppler shift, the third and last terms are gravitational redshift 
contributions (including the difference of  potential between the observer and 
the emitter and the time dependance of the gravitational potential). For a 
review on the perturbations of the microwave background see, e.g., Duffer 
(1994, 1997). 
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with 

It is convenient to decompose A into spherical harmonics 

l=~ rn=+l 

A(n) = ~ ~ atmYtm (0, d~) 
l=2  m=-- l  

f 
= J A(n)Y/m dl-I aim 

Since we have a global isotropy of the CMB, it is sufficient to consider 
the terms 

1 m=+l  
__ _ _  ~ latin 12 

a? 2l + I m=-I 

In a simply connected universe, one can show that for the so-called 
Harrison-Zel'dovich power spectrum for initial perturbations one has (Ste- 
vens et al., 1993) 

1 
a ~  (X - -  

z(t + l)  

In a multiconnected universe, the situation is different. Indeed, the spectrum 
of "allowed" wavelengths becomes discrete, for instance, in the case of 
a hypertorus, 

where the Li are the three scales associated with ~ .  One can see that there 
will be a maximum allowed wavelength hm~ cc 13. This will modify the 
spectrum of the temperature anisotropies in two ways: 

�9 The ratio between temperature fluctuations at large and small angular 
scales is decreased because there is no source at large scales (there is 
a "cutoff '  due to the size of the fundamental polyhedron). Moreover, 
fluctuations at large scales are created as a "queue effect" of spatial 
fluctuations at smaller scales. 

�9 The dependence on 0 at large scales is also modified. 

Both effects have been studied by Stevens et  al. (1993), Starobinsky 
(1993), and recently by de Oliveira-Costa et al. (1995). They all claim that 
the four-year COBE data exclude a multiconnected universe with 13 < ghorizon- 

Other tests were proposed, including one by Starobinsky (1993) using 
l,, such that ,f2-/+ lat is maximum. The COBE data give the bound 
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Im< 7. When applied to a flat universe with a hypertorus topology, Starodin- 
sky found that ct ~ 9000 h-I Mpc. This result is also valid if the universe 
is compact only in some directions. 

Cornish et al. (1996) have proposed a new method to study the topology 
with the CMB. It is based on the following remark. The observed last- 
scattering surface is a 2-sphere. If the fundamental polyhedron is smaller 
than this sphere, then the sphere will intersect with the polyhedron on circles. 
Therefore, the CMB fluctuations will be correlated on circles of the same 
radii on different points of the sky. The number of these circles and their 
mutual location is a signature of the topology. 

It therefore looks as if these results rule out nontrivial topologies on 
sub-horizon scales. However, one must stress that they rely on a strong 
assumption, which is that the universe is flat [the only study considering an 
open universe was done by Fagundes (1993)]. 

Now, it is not obvious that what happens in the flat case is generic to 
all universes. In a flat or closed multiconnected universe, there is a maximum 
allowed wavelength, but let us stress that these studies give a bound on 13 
which can be from 3 to 10 times bigger than the scales of the polyhedron. 
Therefore what is shown is that L ~ 300--1500 h -I Mpc. 

In an open universe the situation is completely different, since there is 
no cutoff for the allowed wavelengths [and the number of modes grows 
exponentially with the wavelength; see Balazs and Voros (1986)]. This invali- 
dates the methods used in the flat case. 

In conclusion, what has really been shown is only that the topology of 
the hypertorus, if the universe is fiat, is ruled out. 

5. T O P O L O G I C A L  DEF ECTS AND THE N O - D E F E C T  
C O N J E C T U R E  

All the previous approaches try to characterize the topology of the 
universe through the observation of objects or the cosmic microwave 
background. 

Another way was proposed recently by Uzan and Peter (1996), who 
studied the influence of multiconnectedness on the physical processes in the 
early universe. 

The production of topological defects during the early-universe phase 
transitions where a symmetry group G is broken in a smaller group H depends 
only on the topology of the vacuum manifold G/H (not to be confused with 
the topology of the universe!). If rro(G/H) 4: {ld}, then domain walls must 
form, whereas strings and monopoles form respectively if "rrl(G/H) 4: {Id} 
and "rrz(G/H) 4: {Id}, where rr,,(G/H) refers to the nth homotopy group. 
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When one considers a multiconnected universe, the situation is different 
since the total winding number of all closed paths lying in the fundamental 
polyhedron must vanish. This observation has a lot of consequences in cos- 
mology [see Uzan and Peter (1996) for all the details concerning the mathe- 
matical proof of this]. 

The physical discussion implies two quantities 

y = ~ _ e p  and ~. _ Lo 
L L~ " ~  - -  n O '  

where ep is the Planck length, Lp the cell size (L) at the Planck time, ~ the 
correlation length of  the defect, and 1t,, the Hubble constant today. 

Let us note that in the case where topology comes from the quantum 
to classical gravity transition, one may expect Lp ~ ep and thus Y -- 1. We 
let this parameter free to be more general (indeed, there is another possible 
length scale in the problem, the inverse square root of  the cosmological 
constant, if it does not vanish, IA = A-m) .  

I summarize our conclusions concerning the existence of  defects if we 
assume that the universe is multiconnected. 

�9 Monopoles: They can only be formed pairwise with vanishing total 
index, which is a quite special field configuration. It should be clear that 
when Y - 1 the probability to have formed a monopole is in fact much 
smaller than that of  forming no monopole at all. The main difference between 
a simply connected universe and a multiconnected universe lies in the fact 
that the former has an infinite number of correlation volumes and the latter 
has only Y such volumes, and thus that no ergodic principle can be applied 
(Uzan and Peter, 1996). 

Therefore, if we ever observe a monopole, it will mean that the universe 
is simply connected or that the phase transition which gave birth to this 
monopole took place after reheating, or that Y > >  1. 

�9 Cosmic strings: If they are contractible, they will decay within a time 
of order L/c. For uncontractible strings, the situation is slightly more involved. 
They have to form with a total winding number that vanishes on all path 
lying on ~ ,  which is very restrictive. Moreover, since the characteristic 
collision time for two such strings is of order L/c, the system, being equivalent 
to no string, will effectively contain no string after such a time. 

Therefore, the observation of a cosmic string will mean that either the 
universe is simply connected or Y 7 c 1. In this latter case the relevant 
parameter is ~o. The observation of a cosmic string will imply that Eo > 1, 
since otherwise all strings will have decayed. Thus this will mean that the 
universe is simply connected up to the scale of the horizon and therefore that 
multiconnectedness is not a relevant property for observational cosmology. 
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�9 Domain walls: As for strings, either they are contractible and they will 
decay within a time smaller than the Hubble time or they are uncontractible. In 
the latter case, the mathematical proof (Uzan and Peter, 1996) states that a 
single wall cannot be formed and that many wails can be formed only in 
very special configurations. Let us, moreover, emphasize that in the standard 
framework of cosmology a single wall is excluded for physical reasons 
(Kibble, 1976, 1980). In a multiconnected universe one can only have at 
least two walls in a very special configuration. The topological argument 
and the physical argument lead us to the conclusion that domain walls cannot 
appear in a multiconnected universe. 

The alternative therefore is simple: either a topological defect is observed 
unambiguously, which means that the universe is simply connected up to the 
horizon size; or one can show using one of the previous methods that the 
universe is multiconnected and we will be able to conclude that topological 
defects are unlikely to exist. 

6. CONCLUSION 

Nontrivial topologies are not excluded, even if they are constrained (we 
know, for instance, that the topology of  the hypertorus is excluded). 

Observationally, we possess two new statistical methods using, respec- 
tively, the distribution of clusters and superclusters and the cosmic microwave 
background. In addition, as we have seen, multiconnectedness imposes strong 
constraints on the formation of topological defects in the early universe. 

However, some problems remain, even if a nontrivial topology is new 
way out for the monopole problem. In the standard cosmological framework, 
this problem is solved by inflation, which dilutes the monopoles, but only if 
it takes place after the phase transition that gave birth to the defects. In a 
multiconnected universe, they simply do not form; however multiconnected- 
ness needs inflation, since the present universe will be too small otherwise. 

The second problem arises from the size of the universe since we have 
seen that the two length scales present are the Planck scale lp and a scale 
associated with the cosmological constant l A. Thus, if the topology is not 
trivial, one has to explain the coincidence (ct, 13) -- Rho,izo.. 

To conclude, we can maintain that we have some powerful tools and 
results to study the cosmic topology objectively. The "philosophical" assump- 
tion of"simple-connectedness of  the universe"joins the set of testable working 
hypotheses, as the "cosmological principle" did. 
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